A novel self-organising clustering model for time-event documents
نویسندگان
چکیده
Purpose Neural document clustering techniques, e.g., self-organising map (SOM) or growing neural gas (GNG), usually assume that textual information is stationary on the quantity. However, the quantity of text is ever-increasing. We propose a novel dynamic adaptive self-organising hybrid (DASH) model, which adapts to time-event news collections not only to the neural topological structure but also to its main parameters in a non-stationary environment. Design/methodology/approach
منابع مشابه
On Document Classification with Self-Organising Maps
This research deals with the use of self-organising maps for the classification of text documents. The aim was to classify documents to separate classes according to their topics. We therefore constructed self-organising maps that were effective for this task and tested them with German newspaper documents. We compared the results gained to those of k nearest neighbour searching and k-means clu...
متن کاملA Dynamic Adaptive Self-Organising Hybrid Model for Text Clustering
Clustering by document concepts is a powerful way of retrieving information from a large number of documents. This task in general does not make any assumption on the data distribution. In this paper, for this task we propose a new competitive Self-Organising (SOM) model, namely the Dynamic Adaptive Self-Organising Hybrid model (DASH). The features of DASH are a dynamic structure, hierarchical ...
متن کاملSelf-Organising Maps in Document Classification: A Comparison with Six Machine Learning Methods
This paper focuses on the use of self-organising maps, also known as Kohonen maps, for the classification task of text documents. The aim is to effectively and automatically classify documents to separate classes based on their topics. The classification with self-organising map was tested with three data sets and the results were then compared to those of six well known baseline methods: k-mea...
متن کاملSelf-Organising Maps for Hierarchical Tree View Document Clustering Using Contextual Information
In this paper we propose an effective method to cluster documents into a dynamically built taxonomy of topics, directly extracted from the documents. We take into account short contextual information within the text corpus, which is weighted by importance and used as input to a set of independently spun growing Self-Organising Maps (SOM). This work shows an increase in precision and labelling q...
متن کاملDocument Clustering Using the 1 + 1 Dimensional Self-Organising Map
Automatic clustering of documents is a task that has become increasingly important with the explosion of online information. The SelfOrganising Map (SOM) has been used to cluster documents effectively, but efforts to date have used a single or a series of 2-dimensional maps. Ideally, the output of a document-clustering algorithm should be easy for a user to interpret. This paper describes a met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Electronic Library
دوره 26 شماره
صفحات -
تاریخ انتشار 2008